zaterdag 27 april 2013

dinges

In de winter overvalt het me ieder jaar opnieuw dat ik aan de eerstejaars studenten moet lesgeven over de Wet van Behoud van Impuls. Om een of andere reden is de Wet van Behoud van Impuls bij ons ingedeeld bij een module die Energetische Systemen heet, en ondanks mijn routine word ik elk jaar weer overvallen door de Wet van Behoud van Impuls. Dat de massa keer de snelheid constant is. Te gebruiken bij botsingen.

Dit is wat ik ervan maak: je hebt kinetische energie (1/2 m*v kwadraat), maar je kunt massa en snelheid ook nog gemakkelijker bij elkaar brengen, namelijk door ze gewoon met elkaar te vermenigvuldigen: m*v. En dat is impuls, letter: p. Er is vast een verband tussen kinetische energie en impuls, maar ik snap dat verband niet. En de oorzaak is, dat ik wat in de wiskunde integreren heet wel kan, maar niet begrijp.

Ik word misschien op het verkeerde spoor gezet door de wet van Hooke: F = c*u en E(veer) = 1/2 c*u kwadraat. Dat lijkt toch enorm op p = m*v en E(kin) = 1/2 m*v kwadraat. Bij Hooke is de kracht van de veer afhankelijk van de verlenging; de kracht keer de verlenging levert de momentane energie en de totale energie is de som van al die momentane verlengingen. En dat is integreren. Is dan de 'momentane' impuls keer de snelheid kinetische energie? Ik snap al nauwelijks wat impuls is, laat staan deze vermenigvuldiging. Sommatie. Dinges.

4 opmerkingen:

  1. Ha Rik, wat leuk! De basis uitleg vind je natuurlijk op http://nl.wikipedia.org/wiki/Impuls_(natuurkunde)
    Wat grappig dat je integreren niet begrijpt maar wel kan. Het eenvoudigst gaat het tussen versnelling, snelheid en plaats. Als de versnelling nul is, is de snelheid constant(of 0) en de verplaatsing is lineair (of 0). Als de versnelling constant is, dan neemt de snelheid lineair toe en de verplaatsing kwadratisch. Zo gaan die stappen.
    De impuls is inderdaad in principe de afgeleide van de kinetisch energie. In principe dan, om dat kinetische energie een richtingloze grootheid is en impuls een vector. Maar of dat helpt om het te snappen? Ikzelf kijk altijd naar de eenheden. Kracht meet je in Newton (kgm/s2) en Energie in Joule (Newtonmeter kgm2/s2). En impuls in kgm/s. De onderlinge dingen die je met elkaar vermenigvuldigt, deelt etc, moeten ook kloppen qua eenheden.In jouw verhaal begrijp ik dan niet wat de eenheid is van de momentane energie, is dat dan energie per seconde die je optelt over een aantal seconden? Dat is inderdaad wat integereren is dan.Ik geloof niet dat mijn verhaal eea helderder gaat maken. Maar misschien is dat ook al omdat mij na testen in mijn 1e jaar Natuurkunde verteld is "Je hebt eigenlijk het brein van een alfa, je vertaalt een beta probleem naar een alf beschrijving en dan los je het op en vertaal je het terug." Oftewel ik heb wel natuurkunde gestudeerd maar ik ben eigenlijk een nepperd. Maar misschien was die
    meneer gewoon bevooroordeeld tegen vrouwen. Best lastig allemaal. Succes ermee.

    BeantwoordenVerwijderen
  2. In mijn eerste jaar in Delft deed ik een vormleeroefening over een schaakspel. Ik moest een zg 'vormfamilie' maken: de schaakstukken moesten bij elkaar horen en ook onderscheidbaar zijn. Ik probeerde het wezen van elk schaakstuk te doorgronden, en ik deed dat met een hoop geouwehoer, door bijvoorbeeld vast te stellen dat de loper nogal een ambitieuze hielenlikker is met fascistische trekjes, terwijl het paard een zelfdestructieve brokkenmaker is en de koning een impotente oude man. Enfin, ik kreeg preceis hetzelfde commentaar als jij: ik heb het brein van een alfa, ... niks te zoeken in Delft dus. Gelukkig was ik een man, dat maakte het een stuk eenvoudiger dan voor jou destijds.

    BeantwoordenVerwijderen
  3. En over integreren: ik snap niet wat de omgekeerde relatie tusssen differentieren en integreren is, zoals ik die relatie tussen optelen en aftrekken en vermenigvuldigen en delen wel begrijp. Dat je de stijlheid van een kromme vindt, als je differentieert, dat snap ik, en dat je het oppervlak onder de grafiek vindt bij integreren, dat begint me nu ook te dagen. Maar waarom zijn stijlheid en oppervlakte elkaars omgekeerde?

    BeantwoordenVerwijderen
  4. En over impuls/kracht/energie: natuurlijk kijk ik ook naar de eenheden. Dat is de manier waarop alfa's dat doen, denk ik.
    De scalar massa met een vector in beweging zetten, dat is nogal een hooggegrepen concept, blijkbaar. Dat levert gevaar op, dat je ofwel 'kracht', of 'energie' of 'impuls' kunt noemen, maar voor ons alfa's komt dat toch allemaal ongeveer op hetzelfde neer, wat jij?
    Bij de natuurkunde is de werkelijkheid meestal niet zo wiskundig als de formules veronderstellen. Dus misschien is er gewoon één grootheid, 'krimpergie' genaamd, die het product is van massa en snelheid tot de macht 5/3, ofzo.

    BeantwoordenVerwijderen